Likheter mellom Cantors teorem og Mengde
Cantors teorem og Mengde har 5 ting til felles (i Unionpedia): Delmengde, Georg Cantor, Naturlig tall, Rasjonalt tall, Reelt tall.
Delmengde
I mengdelæren er en mengde A en delmengde av en mengde B hvis og bare hvis alle elementer av A også er elementer av B. Motsatt kan man si at B er en overmengde av A, som er ekvalient med å si at B inkluderer A. I symboler skriver vi A\subseteq B. A er en ekte delmengde av B hvis og bare hvis A er en delmengde av B, og A \neq B Dette symboliseres slik: A\subset B. Dersom vi har tre mengder, A, B og C, slik som vist nedenfor, vil følgende utsagn være sanne.
Cantors teorem og Delmengde · Delmengde og Mengde ·
Georg Cantor
Georg Ferdinand Ludwig Philipp Cantor (født i St. Petersburg, død 6. januar 1918 i Halle) var en tysk matematiker; professor i Halle.
Cantors teorem og Georg Cantor · Georg Cantor og Mengde ·
Naturlig tall
Et naturlig tall er i matematikken enten et positivt heltall (1, 2, 3,...) eller ikkenegativt heltall (0, 1, 2,...). Den første definisjonen brukes oftest i tallteorien mens den siste brukes innenfor predikatlogikk, mengdelære og datateknologi.
Cantors teorem og Naturlig tall · Mengde og Naturlig tall ·
Rasjonalt tall
Et rasjonalt tall er et reelt tall som kan skrives som en brøk hvor telleren og nevneren er heltall.
Cantors teorem og Rasjonalt tall · Mengde og Rasjonalt tall ·
Reelt tall
De reelle tallene svarer til alle punktene på en tallinje og inkluderer tall som -1, \frac12, \sqrt2, e og \pi. Reelle tall (R eller \mathbb) betegnes i matematikken alle tall som kan representere punkter på en uendelig lang tallinje.
Listen ovenfor gir svar på følgende spørsmål
- I det som synes Cantors teorem og Mengde
- Det de har til felles Cantors teorem og Mengde
- Likheter mellom Cantors teorem og Mengde
Sammenligning mellom Cantors teorem og Mengde
Cantors teorem har 14 relasjoner, mens Mengde har 34. Som de har til felles 5, er den Jaccard indeksen 10.42% = 5 / (14 + 34).
Referanser
Denne artikkelen viser forholdet mellom Cantors teorem og Mengde. For å få tilgang til hver artikkel som informasjonen ble hentet, vennligst besøk: